Large Margin Local Estimate With Applications to Medical Image Classification
نویسندگان
چکیده
منابع مشابه
Large Margin Aggregation of Local Estimates for Medical Image Classification
Medical images typically exhibit complex feature space distributions due to high intra-class variation and inter-class ambiguity. Monolithic classification models are often problematic. In this study, we propose a novel Large Margin Local Estimate (LMLE) method for medical image classification. In the first step, the reference images are subcategorized, and local estimates of the test image are...
متن کاملCoherence functions with applications in large-margin classification methods
Support vector machines (SVMs) naturally embody sparseness due to their use of hinge loss functions. However, SVMs can not directly estimate conditional class probabilities. In this paper we propose and study a family of coherence functions, which are convex and differentiable, as surrogates of the hinge function. The coherence function is derived by using the maximum-entropy principle and is c...
متن کاملLarge margin learning of hierarchical semantic similarity for image classification
In the present paper, a novel image classification method that uses the hierarchical structure of categories to produce more semantic prediction is presented. This implies that our algorithm may not yield a correct prediction, but the result is likely to be semantically close to the right category. Therefore, the proposed method is able to provide a more informative classification result. The m...
متن کاملLarge-Margin Classification with Multiple Decision Rules
Abstract: Binary classification is a common statistical learning problem in which a model is estimated on a set of covariates for some outcome indicating the membership of one of two classes. In the literature, there exists a distinction between hard and soft classification. In soft classification, the conditional class probability is modeled as a function of the covariates. In contrast, hard c...
متن کاملLarge Margin Local Metric Learning
Linear metric learning is a widely used methodology to learn a dissimilarity function from a set of similar/dissimilar example pairs. Using a single metric may be a too restrictive assumption when handling heterogeneous datasets. Recently, local metric learning methods have been introduced to overcome this limitation. However, they are subjects to constraints preventing their usage in many appl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Medical Imaging
سال: 2015
ISSN: 0278-0062,1558-254X
DOI: 10.1109/tmi.2015.2393954